

TRANSPARENCY IN NEURAL NETWORKS, THIRD WORKSHOP

Uncertainty Quantification in Al – Drone Landing Use Case

Rafal Kulaga, Suman Subedi, 19.10.2022

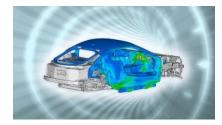
Agenda

- **1** Introduction
- 2 Probabilistic Object Detection
- **3 Use Case 1 Uncertainty Monitoring**
- 4 Use Case 2 Drone Sensor Fusion
- 5 Summary

01 Introduction

European Tech Company in the Middle of Europe.

IABG at a glance.



> Name	Industrieanlagen-Betriebsgesellschaft mbH (IABG)
> Foundation	1961
> Headquarters	Ottobrunn near Munich, Germany
Supervisory Board (Chair)	Engelbert Kupka MdL a.d.
> Managing Board	Prof. Dr. Rudolf F. Schwarz Thomas Köhler
Number of Employees	Approx. 1,100
> Turnover	Approx. € 215 million (2019)
> Locations	11
> Business Fields	 Automotive InfoCom Mobility & Energy Environment & Geodata Aeronautics

- Space
- Defence & Security

We Support Analyses, Conception, Implementation and Operation of High Technology along the Whole Life Cycle.

Automotive

Testing & simulation; development and construction of customer-specific test systems; method development & virtual qualification

InfoCom Advising public and industrial customers with secure networked information and communication systems

Aeronautics

Qualification of parts, components and complex overall systems; life-time predictions; digital twins & virtual qualification

Space

Environmental & qualification tests of satellites and launchers at the space centre; consulting on space programmes; new-space applications

Defence & Security

Independent consulting, testing and simulation services for armed forces in all operational dimensions and capability domains

Innovation

Innovation centre as incubator for the future service portfolio with a focus on digitisation, data science & AI as well as networked. electrical, autonomous systems

5

Mobility & Energy

Securing electric mobility for roads and railguided traffic: batteries, H2 fuel cells, drives, inductive charging; gualification of alternative energies

Environment & Geodata

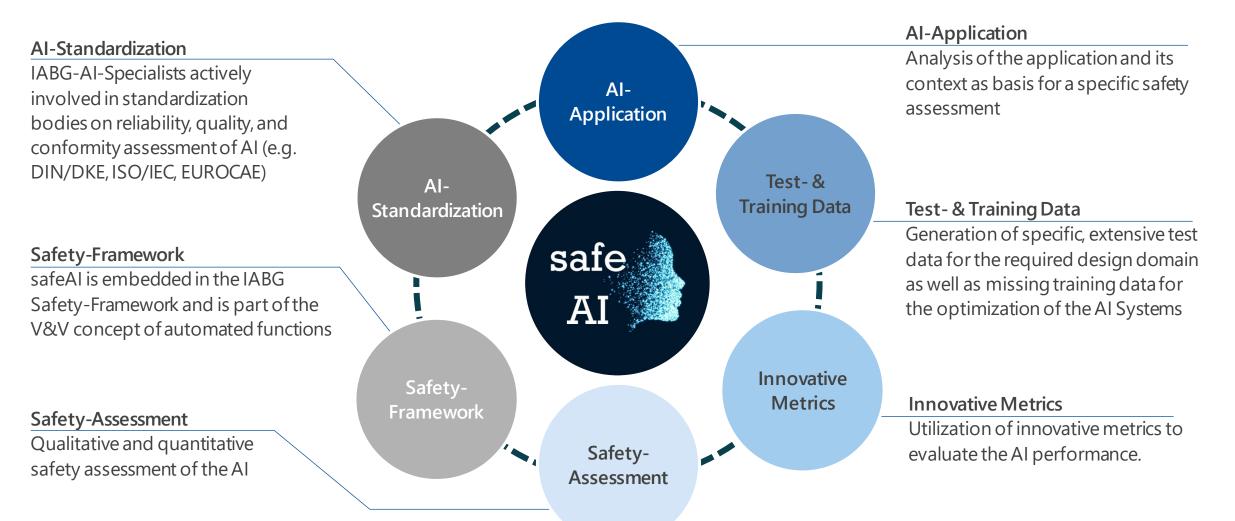
Applications and solutions from geodata/geoinformation; environmental engineering; remediation of contaminated sites & land recycling

IABG Innovation

Shaping the future.

The Innovation Centre anticipates trends and serves as an incubator and accelerator for the development of new (digital) business models for the entire IABG group.

Our focal points are


- Methods and Technologies
 - Data Sciences (Big Data, Data Mining, Natural Language Processing, Predictive Analytics)
 - Cognitive Systems (Machine Learning, EdgeAl¹)
 - Dependability
- Applications / InnoLab
 - Autonomous systems (MBSE², VR/AR³, Human Factors)
 - Smart Society (Smart City, future transportation/mobility, ageing society, renewable energies)
 - New Space (micro launcher, earth observation, SatCom, SatNav)
- Current Innovation Projects and Programmes
 - <u>SPARTA</u> Society, Politics and Risk with Twitter Analysis
 - RAISE Resilient deep learning in space
 - <u>safeAI</u> Safeguarding of AI algorithms

Subedi | Transpa

safeAI – Overview

Motivation Behind Uncertainty Quantification in AI

Huge demand for AI systems

Al plays an increasingly important role in many application fields, e.g. automotive, aviation, finance, healthcare, scientific computing.

Growing concern over safety of AI systems

Transition from lab to real-life applications of AI systems raises safety concerns.

2

1

Growing research in uncertainty quantification in AI

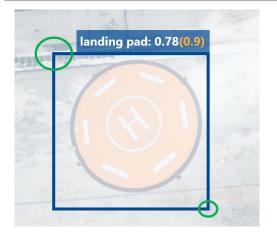
Multiple papers on uncertainty quantification in AI are published every year [1].

Uncertainty quantification as a building block of safe AI

Apart from other use cases, uncertainty quantification can be used to increase reliability and safety of systems with AI components.

02 Probabilistic Object Detection

Probabilistic Object Detection General Concept

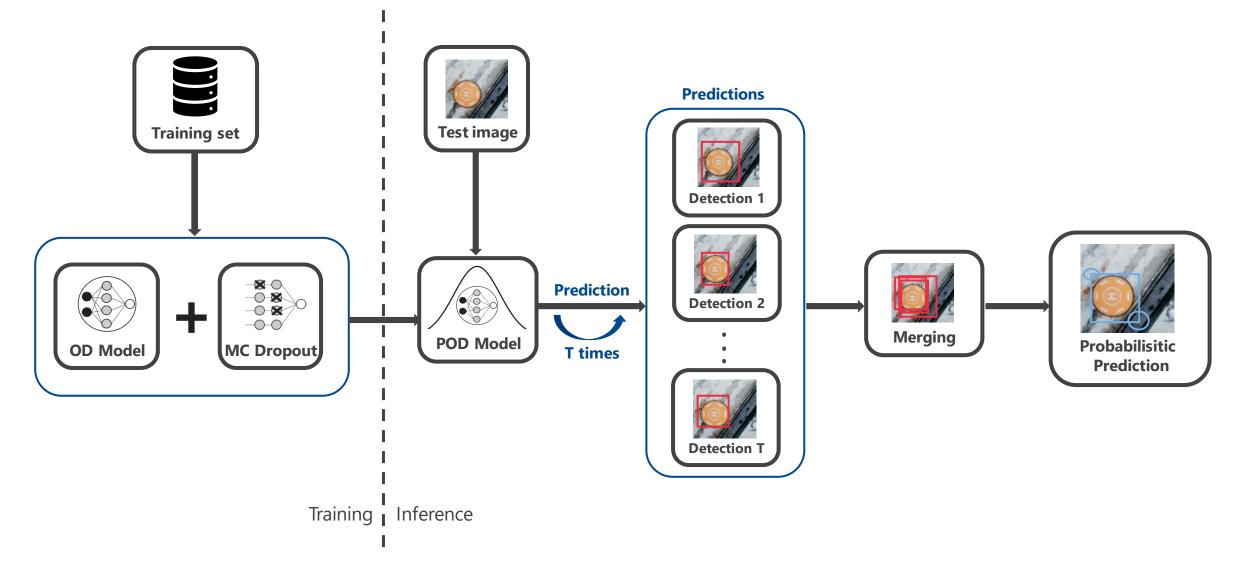


(Standard) Object Detection (OD)

The task of detecting objects in images

- Model is supposed to localize and classify objects of interest in an image
- Most popular object detection models can perform (standard) object detection

Probabilistic Object Detection (POD)


The task of detecting objects in images while accurately quantifying the **spatial (bounding box location)** and **semantic (label)** uncertainties of the detections. [1]

• There are various uncertainty quantification methods that can be integrated with standard object detection models.

Probabilistic Object Detection

Inference Pipeline with MC Dropout

Probabilistic Object Detection Motivating Example

Detection of a Landing Pad in Various Conditions

Fully visible landing pad:

Low uncertainty •

Not fully visible landing pad: High uncertainty

Conclusion

Uncertainty can deliver very valuable information but **how to take advantage of it in practical use cases?**

Landing pad with sun reflection:

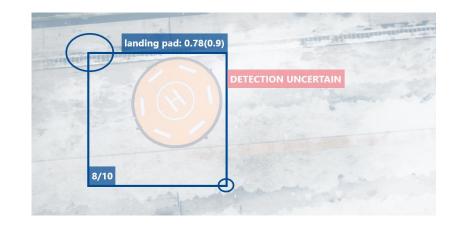
- Unexpected case
- High uncertainty

Use Case 1 – Uncertainty Monitoring

Uncertainty Monitoring Scenario, Problem and Task Definition

Scenario – Autonomous Drone Landing

- Autonomous landing is a manoeuvre during which a drone lands on a designated landing pad.
- The drone is equipped with a downward-facing camera.
- The landing pad is detected using deep learning object detection model.
- Scenario has been realized in a virtual environment AirSim
 [1]


Created using AirSim [1]

Problem and Task Definition

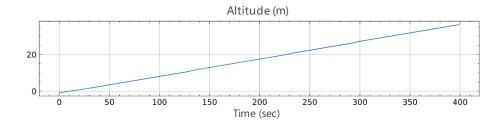
For complex, real-life use cases it is difficult to cover in a training set all potential scenarios that model can encounter in operation. Nevertheless, it is necessary to safely handle also new/unknown cases.

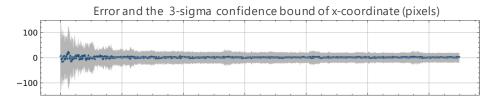
The task has been defined as follows:

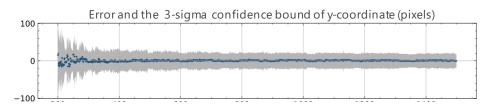
- Monitor model's confidence/uncertainty
- Deem each prediction certain or uncertain
- Act on the results of UQ

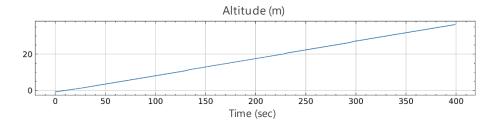
Uncertainty Monitoring Illustrative Analysis of Estimated Uncertainties

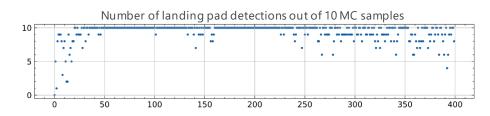
Spatial (bounding box) uncertainty

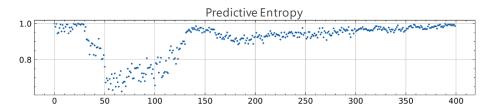

• Spatial uncertainty correlates with localization error



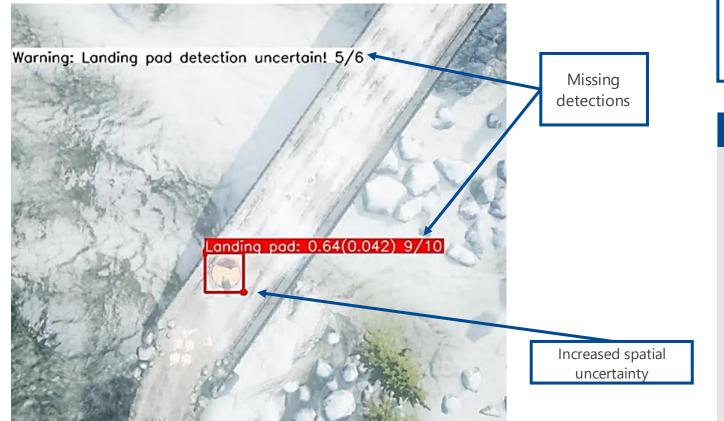



Semantic (label) uncertainty


• Semantic uncertainty depends on the drone altitude



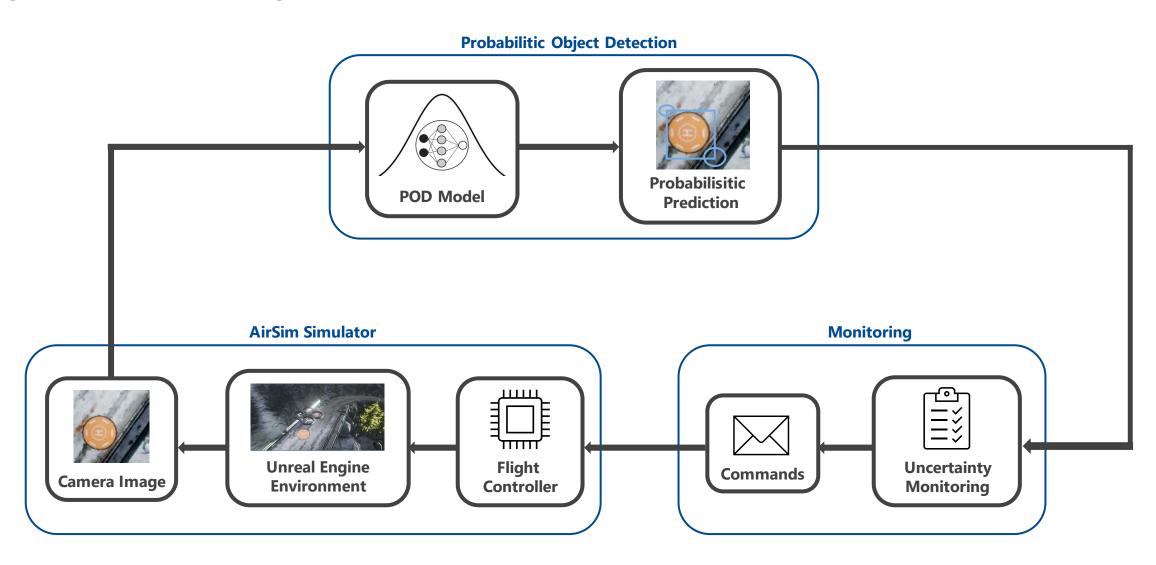
Uncertainty Monitoring Standard Object Detection - Unsafe Detection


American Crow V1 (https://skfb.ly/S88s) by warrenblyth (http://www.warrenblyth.com/index.html) is licensed under Creative Commons 4.0 Attribution Parrot-Anafi drone (https://skfb.ly/GRuSB) by Gerhard Kempf Grafikdesign is licensed under Creative Commons 4.0 Attribution Traffic Cone: https://www.cgtrader.com/free-3d-models/industrial/other/traffic-cone-lb4a9fa5-ba88-4841-b81a-774ba2076637 Traffic Cone Texture: https://www.cgtrader.com/free-3d-models/architectural/street/traffic-cone-low-poly-d2d5c607-afbf-4fc3-96dd-651ab6d92e18 Overconfident prediction (model was intentionally trained only on images of empty landing pads)

Details

- There are no measures that would allow to detect that the prediction is overconfident and might be wrong.
- Detection score/probability (output of the softmax function) is often overconfident.
- Even if a softmax output (detection score) is high, a model can be uncertain. [1]

Uncertainty Monitoring Probabilistic OD – Risk Mitigation


American Crow V1 (https://skfb.ly/S88s) by warrenblyth (http://www.warrenblyth.com/index.htm)) is licensed under Creative Commons 4.0 Attribution Parrot-Anafi drone (https://skfb.ly/GRuSB) by Gerhard Kempf Grafikdesign is licensed under Creative Commons 4.0 Attribution Traffic Cone: https://www.cgtrader.com/free-3d-models/industrial/other/traffic-cone-lb4a9fa5-ba98-4841-b81a-774ba2076637 Traffic Cone Texture: https://www.cgtrader.com/free-3d-models/architectural/street/traffic-cone-lbw-poly-d2d5c607-afbf-4fc3-96dd-651ab6d92e18 Access to additional information (uncertainties, number of detections) can be used to detect and handle unexpected scenarios.

Details

- Estimation of uncertainty takes place during runtime
- Computationally efficient uncertainty quantification is needed
- Assessment of reliability of each prediction and use of uncertainty as input to command generation (safe decision making) as shown in this simplified sequence:
 - if confidence_is_low(camera_img):
 - stop_landing_manoeuvre()
 - signal safety issue()
 - switch_to_manual_control()

Uncertainty Monitoring Integration into a Drone Landing Loop

19

Uncertainty Monitoring Takeaways and Challenges

- Takeaways
 - Uncertainty can be used to detect unexpected (potentially dangerous) situations and handle them better

• Challenges

- Tuning of the probabilistic models to the task at hand
 - UQ methods like MC dropout increase number of model's hyperparameters
- Real time requirements
 - Sampling based UQ methods (e.g. MC dropout, ensembles) require strong optimization to allow fast inference on small devices
- $\ Acting \ on \ uncertainty \ and \ selecting \ safety/certainty \ thresholds$
 - Selection of uncertainty thresholds (to distinguish certain detections from uncertain detections) depends on multiple aspects (e.g. AI task, applied UQ method, used uncertainty measure)

04 Use Case 2 – Drone Sensor Fusion

Drone Sensor Fusion Scenario, Problem and Task Definition

Scenario – State Estimation

- Kinematic state estimation of a flight vehicle is critical for control of the vehicle.
- **Kinematic states:** 3D position, 3D linear velocities, and 3D orientation.
- Extended Kalman filter is used as the standard method for state estimation.

Created using AirSim [1]

Problem and Task Definition

• Failure of one of the sensors can lead to a dangerous drop in state estimation quality.

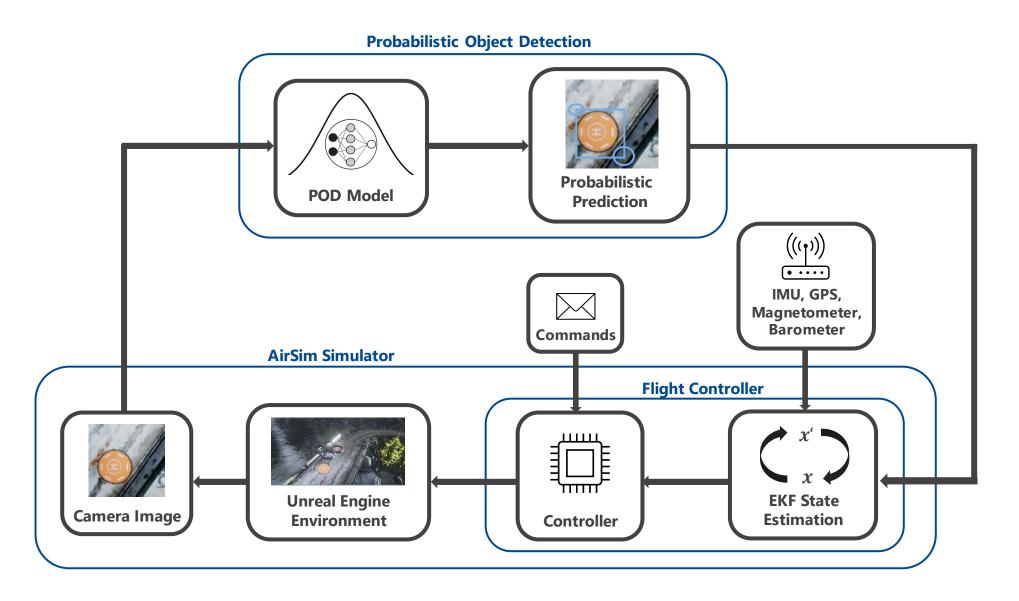
The task has been defined as follows:

- Use probabilistic object detection as a redundant localization information source
- Add object detection uncertainties to the fusion algorithm (extended Kalman filter)

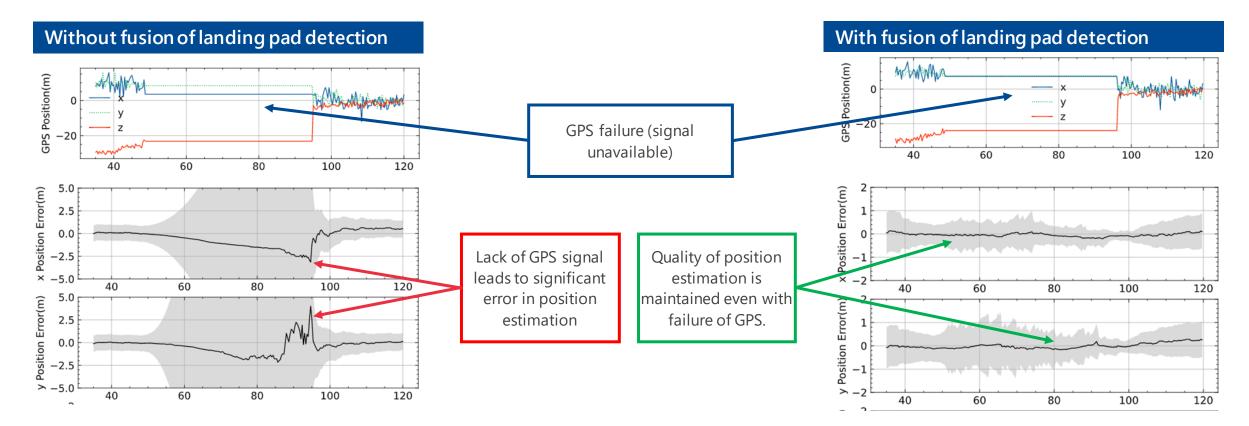
Drone Sensor Fusion

Sensors and Object Detection Uncertainties

- The drone localizes itself using **extended Kalman filter** based on the information from sensors:
 - IMU
 - GPS
 - Magnetometer
 - Barometer
- In addition, it strengthens its localization using object detection of a landing pad that is placed on a known location.
- A measurement sensor model of camera is used to fuse landing pad detection (perform measurement update) taking the **spatial uncertainty** as the time-varying measurement noise characteristics.
- **Semantic uncertainty** is used to filter out detections with high uncertainty to preserve the correctness of the mathematical sensor model.



Drone Sensor Fusion



Integration into a Drone State Estimation Loop

Drone Sensor Fusion Advantage of Fusing Landing Pad Detection

Conclusion

Sensor fusion of probabilistic object detection results can help maintain the state estimation quality even under failure of substantial components (such as GPS).

Kulaga, S. Subedi | Transparency in Neural networks | 3rd Workshop

ė

19.10.2022

25

Drone Sensor Fusion Takeaways and Challenges

- Fusion of object detection for state estimation can be valuable for landing scenario in absence of GPS signals.
- Detecting foreign objects as a landing pad makes the fusion of object detection incorrect.
 - Semantic (label) uncertainty is crucial to filter out false detections.
- It is necessary to calibrate the spatial (bounding box) uncertainty for the given dataset.

• Challenges

- The integration is complicated as the low-level EKF algorithm in a flight controller needs to be modified.
- Calibration of the uncertainty is hard as the uncertainty depends on the flight trajectory.

05 Summary

Summary

- Uncertainty quantification can play an important role in increasing safety of AI based system such as vision systems.
- Goal of probabilistic object detection is to detect objects in images while accurately quantifying the spatial and semantic (label) uncertainties of the detections.
- We presented how uncertainty can be used in two practical use cases:
 - Uncertainty monitoring for safer decision making
 - Fusion of uncertainty for reliable state estimation

Your contact

IABG mbH

Einsteinstraße 20 85521 Ottobrunn

Tel. +49 89 6088-0 Fax +49 89 6088-2220

info@iabg.de www.iabg.de

Rafal Kulaga Data Scientist

Predictive Modeling and Decision Support

Tel. +49 89 6088 4733 kulaga@iabg.de

Suman Subedi Al Safety Engineer

Predictive Modeling and Decision Support

Tel. +49 89 6088 2462 subedi@iabg.de