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System-under-test (SUT)

Open question: How do we audit the SUT?

◼ Understanding the failure modes of SUT

◼ Develop methods to quantify/evaluate each failure mode

Cats

Dogs

1 High-Level Introduction to DNN Testing
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◼ 1 - Lack of Robustness

◼ Performance drop due to environment & sensor

◼ More prominent in computer vision tasks

◼ Current research in direction of 

◼ Quantifying robustness of models

◼ Improving robustness of models

Hendrycks, D. et al. Benchmarking neural network robustness to common corruptions and perturbations. 2019

1 (Some) Failure Modes in DNNs
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◼ 2 - Susceptibility to Adversarial Attacks

◼ Failure due to model fragility

◼ Several sophisticated methods exist for targeted 
and untargeted attacks

◼ Adversarial defenses exist (but no single good 
defense for all attacks)

𝑥 + 𝛿 = 𝑥′

pig
91%

airliner
99%

+ =

https://adversarial-ml-tutorial.org/introduction/

1 (Some) Failure Modes in DNNs
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◼ 3 - Lack of Domain Generalization

◼ Models trained on source domain might not 
directly perform well on target domains

◼ Problem lies in

◼ Insufficient generalization capabilities of 
DNNs

◼ Vague formulation of data distributions

◼ Improving domain generalization could help in 
unlocking usefulness of synthetic data for 
training and testing

Luo, Y. et al Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation 2019

Source Target

Li, Y. et al. Bidirectional learning for domain adaptation of semantic segmentation. 2019

(Some) Failure Modes in DNNs1
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◼ What about semantics of objects?

◼ Not enough focus on failure modes w.r.t. 
semantic content of objects in the image 

◼ Classic example – Fairness of DNNs

Performance on full test not representative on 
all (semantic) subsets of data

◼ Systematic weaknesses  of DNNs on data 
subsets

Data Performance

Full test data Acceptable performance

Data subset-1 Good performance

Data subset-2 Low performance

Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.

(Some) Failure Modes in DNNs1



- Öffentlich -12.12.2022
© Fraunhofer IAIS

Seite 9

◼ Systematic weaknesses of DNNs on data subsets

Why is studying this failure mode useful?

Consider a DNN in an autonomous driving task in the following two situations

Situation Performance metric Actionable 
information for ML 

developer

Actionable 
information for ML 

auditor

Typical DNN testing 𝑃𝑒𝑟𝑓𝑎𝑙𝑙−𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 = 65% Done? Approved?

Systematic 
weakness analysis 

𝑃𝑒𝑟𝑓𝑟𝑒𝑑−𝑠ℎ𝑖𝑟𝑡𝑒𝑑−𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 = 35%

𝑃𝑒𝑟𝑓𝑟𝑒𝑠𝑡−𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 = 95%

Add more red-shirted 
pedestrians to the 

training data

Model cannot perform 
well on red-shirted 
pedestrians. Is that 

acceptable? 

1 (Some) Failure Modes in DNNs
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◼ Definitions and setup 1/2

◼ Slice discovery methods (SDMs)

Finding top-k weak performing slices from 
the data

◼ Slice

A semantic (coherent) subset of the data

◼ Features or metadata

Human-understandable semantic attributes 
describing the data

Entire data 

Slice 1

Slice 2

2 Problem Formulation on Structured Data
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◼ Definitions and setup 2/2

◼ Consider a dataset of m features and n samples

◼ Transform data such that

◼ Categorical values → one-hot encoded

◼ Numerical values → Binning → one-hot 
encoded

◼ Slice is defined as an “AND” combination of 

◼ Multiple features

◼ One value per feature

◼ e.g., Slice A=(Feature 1=Blue, Feature 2=15-20) 

Sample 
no.

Feature 1
(Categorical)

Feature 2
(Binned 
continuous)

… Feature m Performance
/ Error

Sample 1 Blue 10-15

Sample 2 Red 15-20

…

Sample n Green 30-35

Problem Formulation on Structured Data2
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◼ SliceFinder (Chung et al.)

◼ How does it work? 

◼ Transform data into one-hot encoded values

◼ Proposal of different slice combinations 
based on features

◼ Order slices based on criteria and obtain 
top-k slices  

◼ Criteria

◼ Number of semantic features 

◼ Size 

◼ Effect size 

Chung, Y., Kraska, T., Polyzotis, N., Tae, K. H., & Whang, S. E. (2019, April). Slice finder: Automated data slicing for model validation. In 2019 IEEE 35th International Conference on Data Engineering (ICDE) IEEE.

Slice Discovery Methods on Structured Data2
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◼ Sliceline (Sagadeeva et al.)

◼ Inspired from Slicefinder method

◼ Overcomes shortcomings in Slicefinder w.r.t. 
missing certain slices

◼ Proposes a new scoring function that considers 
slice size and slice error

◼ Builds a lattice structure that can be effectively 
pruned based on 

◼ Monotonicity property 

◼ Scoring function

◼ Provides a fast linear algebra-based enumeration 
algorithm to solve this top-k weak slice discovery 
problem

Sagadeeva, S., & Boehm, M. (2021, June). Sliceline: Fast, linear-algebra-based slice finding for ml model debugging. In Proceedings of the 2021 International Conference on Management of Data (pp. 2290-2299).

Slice Discovery Methods on Structured Data2
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◼ Challenges in applying structured slice discovery methods

◼ Complex data is often unstructured, and this is 
where DNN application provides most benefits

◼ Unstructured data like images cannot be easily 
transformed into tabular format

◼ Different approaches 

◼ Use multimodal DNNs or SUT embeddings to 
bring structure to unstructured data

◼ Use e.g., simulators to generate both 
unstructured and structured data

Sample 
no.

Feature 1
(Categorical)

Feature 2
(Binned 
continuous)

… Feature m Performance 
(Error)

Sample 1 Blue 10-15

Sample 2 Red 15-10

…

Sample n Green 30-40

2 Structured vs Unstructured Data
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◼ Spotlight (d’Eon et al.)

◼ Domain agnostic

◼ Looks at final embeddings of model to identify 
contiguous regions of high loss and limited size 
(spotlights)

◼ Soft clustering by assigning data points into 
spotlights is the optimization problem

◼ Data samples membership to multiple clusters 
(spotlights) are typically evaluated

◼ Major problems

◼ No description provided for slices. Manual 
inspection is required

◼ Highly dependent on spotlight size 
(hyperparameter)

d'Eon, G., d'Eon, J., Wright, J. R., & Leyton-Brown, K. (2022, June). The spotlight: A general method for discovering systematic errors in deep learning models. In 2022 ACM Conference on Fairness, Accountability, and 
Transparency (pp. 1962-1981).

2 Slice Discovery Methods on Unstructured Data
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◼ Domino (Eyuboglu et al.)

◼ Embed

Uses pre-trained CLIP model to embed image 
and text in common embedding space

◼ Slice 

Uses a variant of Gaussian mixture models to 
slice data and find weak performing slices

◼ Explain

Uses a pre-trained BERT model to explain the 
weak slice embeddings

Eyuboglu, S., Varma, M., Saab, K., Delbrouck, J. B., Lee-Messer, C., Dunnmon, J., ... & Ré, C. (2022). Domino: Discovering systematic errors with cross-modal embeddings. arXiv preprint arXiv:2203.14960.

2 Slice Discovery Methods on Unstructured Data
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◼ Metadata creation from simulators

◼ Use computer simulators (e.g., Carla) to 
generate metadata about objects

◼ Metadata contains granular information about 
different semantics of pedestrians

◼ Models are

◼ Trained using synthetic images and labels 

◼ Tested on these synthetic images and labels 
along with the granular metadata 

Gannamaneni, S., Houben, S., & Akila, M. (2021). Semantic Concept Testing in Autonomous Driving by Extraction of Object-Level Annotations from CARLA. In Proceedings of the IEEE/CVF International Conference on 
Computer Vision (pp. 1006-1014).

2 Evaluating Unstructured Data using SDMs used for Structured Data
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◼ Building structured data from images

◼ Build structured data from the features & 
performance metrics

◼ Apply slice discovery methods for structured data 
on the tabular data

◼ Find top-k weak slices and evaluate if the 
information is actionable

Gannamaneni, S., Houben, S., & Akila, M. (2021). Semantic Concept Testing in Autonomous Driving by Extraction of Object-Level Annotations from CARLA. In Proceedings of the IEEE/CVF International Conference on 
Computer Vision (pp. 1006-1014).

2 Evaluating Unstructured Data using SDMs used for Structured Data
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◼ Open questions 

◼ Is granularity in metadata important? → Could improve quality 

◼ How can we evaluate or compare SDMs? Qualitative → Quantitative

◼ Are SDMs for structured data better than SDMs for unstructured data?

◼ Synthetic data help in evaluating and comparing SDMs → Bridging unstructured to structured 

◼ However, at the end, SDMs need to work on real-world data

◼ Techniques to generate metadata for real-world data are required and would have following benefits

◼ Helps in evaluating the DNNs trained on real-world data  

◼ Helps in defining Operational Design Domain (ODD)

3 Open Questions and Conclusion



Contact
Sujan Gannamaneni

sujan.sai.gannamaneni@iais.fraunhofer.de

+49 2241 14-2292

Fraunhofer-Institut für Intelligente Analyse-

und Informationssysteme IAIS

Schloss Birlinghoven

53757 Sankt Augustin

www.iais.fraunhofer.de

http://www.iais.fraunhofer.de/

