

TRUST IN ARTIFICIAL INTELLIGENCE

Testing of Fairness Requirements Under the EU Al Act

Workshop Zertifizierte KI: Technische Prüfung von Fairnessanforderungen 19/06/2024 09:30 – 12:30 (CET)

Presentation by

Dr. Robert Kilian – robert@getcertif.ai Dr. Nico Schmidt – nico@getcertif.ai

At the Forefront of AI Testing and Certification

We are combining regulatory and technical expertise to provide world-class AI testing and certification services.



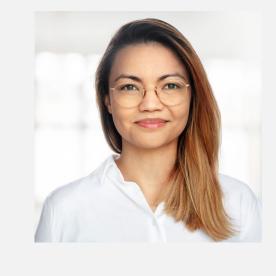
DR. ROBERT KILIAN CEO

- 15y+ experience digital business models in highly regulated industries
- **Board Member German AI Association with** 400+ AI companies as members
- Frequent expert to German parliament and teaches AI regulation at Humboldt **University Berlin**
- Member of the Microsoft AI Expert Council & DIN AI standardization expert
- Ex-Board Member and Executive N26 Bank; founder data analytics provider Beams; Ex-Hengeler

Hengeler Mueller

JAN ZAWADZKI CTO

- Former Head of Artificial Intelligence at Cariad
- Built central AI hub with 50+ AI experts in Germany and China
- Member of various AI leadership committees
- Guest lectures at Oxford University and ESMT Berlin
- Created the AI Project Canvas
- Studied Data Science & Business; Former Management Consultant at EY



STEPHANIE JONKERS

- Lead AI Tooling Expert at CertifAI
- Former Technical Program Manager at AWS

aws

• Former Senior Data Scientist at CARIAD

DR. NICO SCHMIDT

C A R | A D

- Lead Safe AI Data Scientist at CertifAI
- Former Lead Architect Data Loop @CARIAD
- Autonomous Driving Research at VW

CARIAD

Recent Projects include

MISSION KI

Development of quality and testing standards for AI systems as part of the BMDV project Mission KI advising the Federal Government

Testing and Certification as a Solution

The main challenges of AI system providers can be overcome by testing and certifying the individual AI system.

- Testing and certification provide for EU market access through legally required conformity assessments and model validations under the applicable risk regulations.
- It also is necessary to **comply** with the EU AI Act requirements to avoid fines.

LIABILITY SHIELD

Testing and certification by a thirdparty independent expert **mitigate** risks and protect both corporate and managerial liability.

Fairness According to the EU AI Act

Fairness Requirements Under the EU AI Act

For high-risk AI systems the EU AI Act is providing for fairness obligations regarding the used data sets.

Recognition of diversity, non-discrimination and fairness as one of the 7 AI HLEG principles

Absence of biases in training, validation and testing data as part of high-risk AI system data governance

Art. 10(2) EU AI Act

Rec. 27 EU AI Act

(f) examination in view of possible biases that are likely to affect the health and safety of persons, have a negative impact on fundamental rights or lead to discrimination prohibited under Union law, [...]; (g) appropriate measures to detect, prevent and mitigate possible biases identified according to point (f) [...].

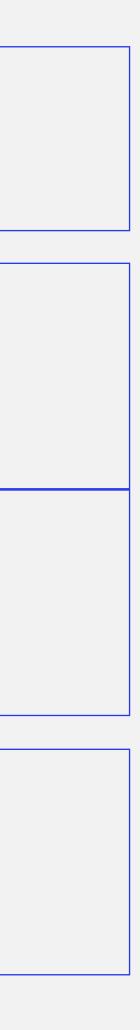
Biases can for example be inherent in underlying data sets, especially when historical data is being used, or generated when the systems are implemented in real-world settings. Results provided by AI systems could be influenced by Rec. 67 EU AI Act such inherent biases that are inclined to gradually increase and thereby perpetuate and amplify existing discrimination, in particular for persons belonging to certain vulnerable groups, including racial or ethnic groups. [...]

Certain AI systems (evaluation of credit score or creditworthiness) are classified as high-risk due to possible discrimination

Rec. 58 EU AI Act

[...] AI systems used for those purposes may lead to discrimination between persons or groups and may perpetuate historical patterns of discrimination, such as that based on racial or ethnic origins, gender, disabilities, age or sexual orientation, or may create new forms of discriminatory impacts. [...]

"Al systems are developed and used including diverse actors and promoting equal access, gender equality and cultural diversity, while avoiding discriminatory impacts and unfair biases that are prohibited [...]."



REGULATORY LANDSCAPE

Fairness Under German and European Law

Other German and European law also contains requirements for the fairness of Al-supported decisions.

GENERAL LEGAL FRAMEWORK

Art. 18 (34 ff., 45 ff., 56 ff., 63 ff.) TFEU

Esp. goods, persons, services and capital

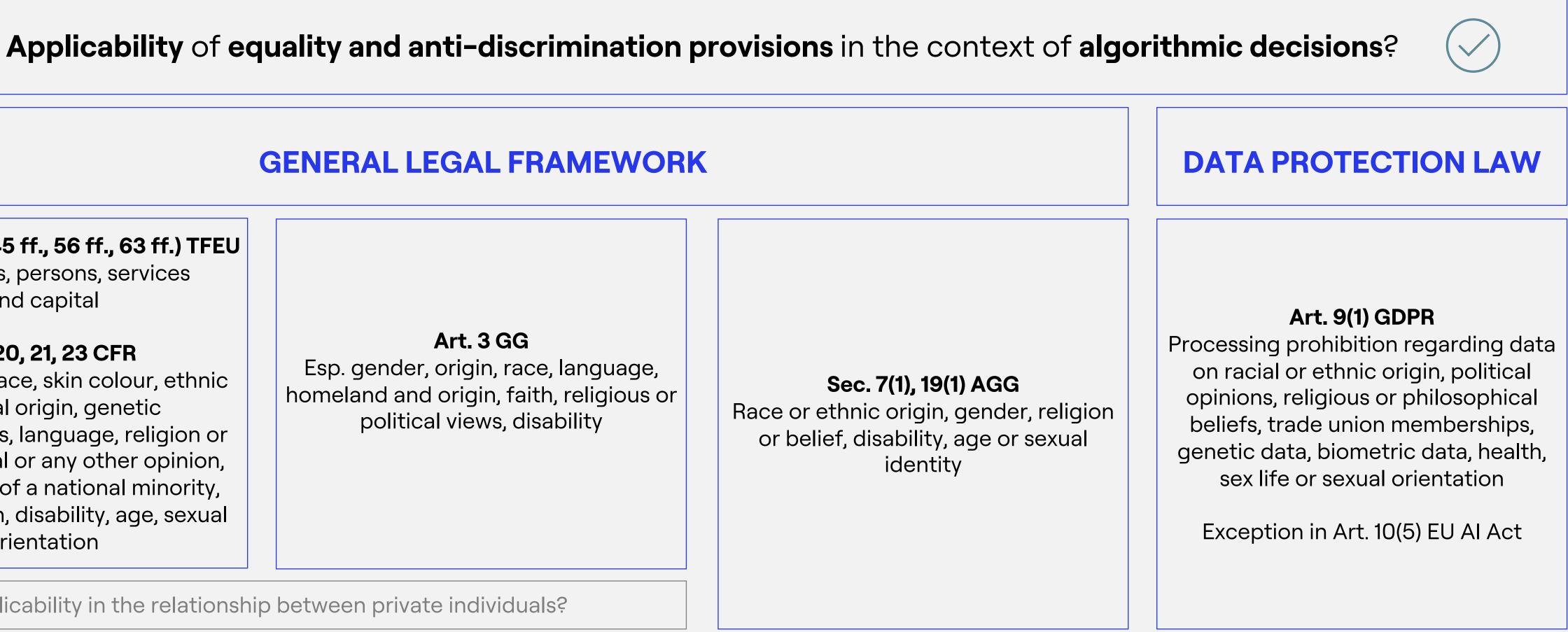
Art. 20, 21, 23 CFR

Esp. gender, race, skin colour, ethnic or social origin, genetic characteristics, language, religion or belief, political or any other opinion, membership of a national minority, property, birth, disability, age, sexual orientation

Art. 3 GG

Esp. gender, origin, race, language, homeland and origin, faith, religious or political views, disability

Applicability in the relationship between private individuals?



Legal Requirements to Technical Standards

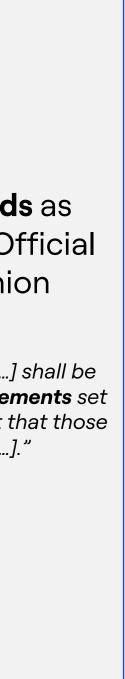
The abstract EU AI Act requirements are being transposed into more specific, actionable technical standards.

Specification of Legal Requirements

Harmonised Standards for the EU AI Act

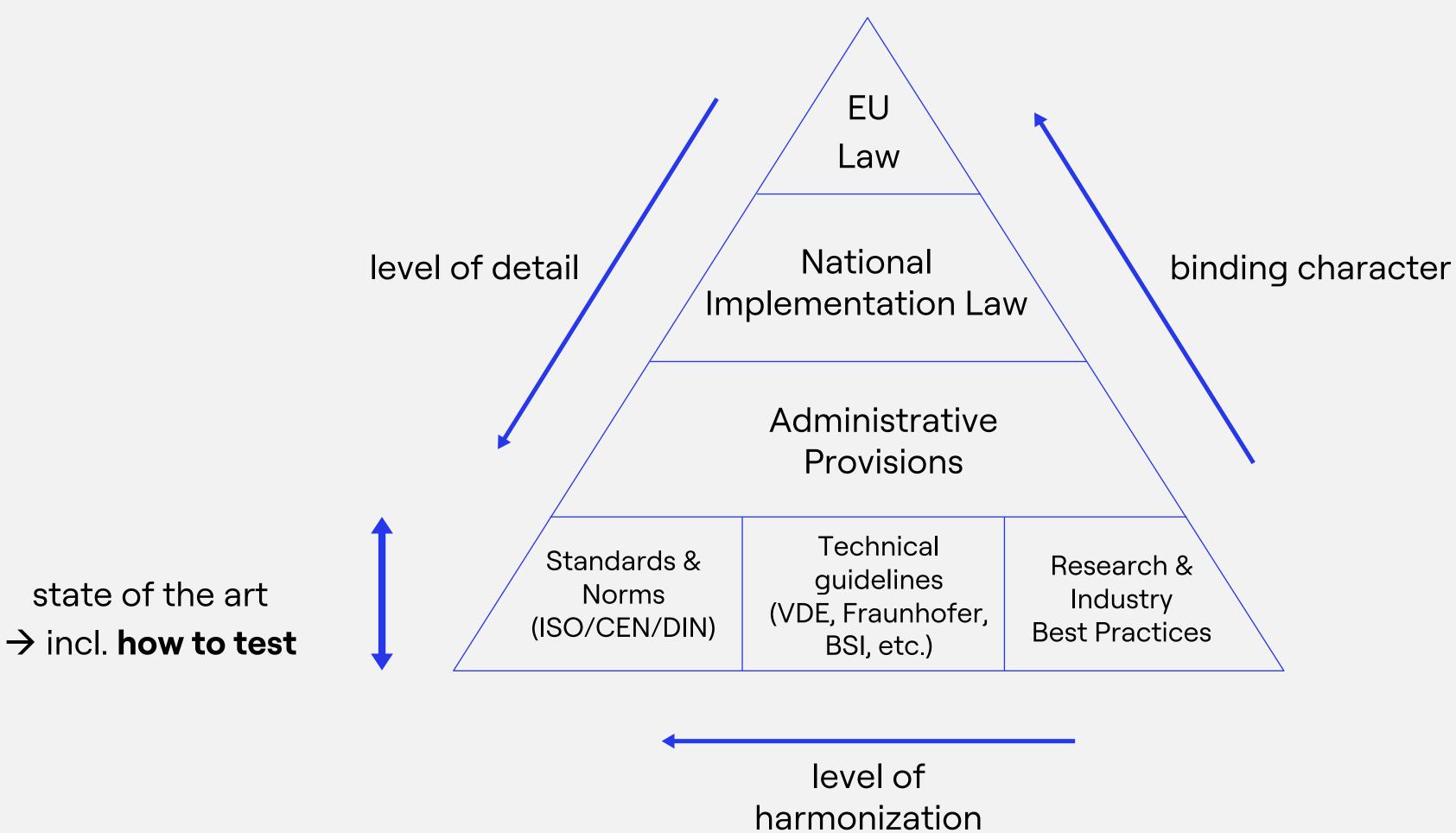
≡ **CEN-CENELEC JTC 21** is considering existing standards for harmonisation **CEN/CLC technical standards** as and developing new ones by April 30, harmonised standards in the Official 2025 (Art. 1 (C(2023)3215)) Journal of the European Union Status Project reference Art. 40(1) EU AI Act EN ISO/IEC 22989:2023/prA1 (WI=JT021031) "[...] conformity with harmonised standards [...] shall be Information technology — Artificial intelligence — Artificial Under Drafting presumed to be in conformity with the requirements set intelligence concepts and terminology - Amendment 1 out in [Chapter III, Section 2] [...], to the extent that those EN ISO/IEC 23053:2023/prA1 (WI=JT021032 Framework for Artificial Intelligence (AI) Systems Using Under Drafting standards cover those requirements [...]." Machine Learning (ML) — Amendment 1 FprCEN/CLC ISO/IEC/TS 12791 (WI=JT021013 Information technology - Artificial intelligence - Treatment Approved of unwanted bias in classification and regression machine learning tasks (ISO/IEC DTS 12791:2023) FprCEN/CLC/TR 18115 (WI=JT021007 Data governance and quality for AI within the European Under Approval context prCEN/CLC/TR 17894 (WI=JT021001) Under Drafting Artificial Intelligence Conformity Assessment

Testing of Fairness Requirements Under the EU AI Act



Testing Al Systems For Fairness

From Legal Obligations to Technical Measures

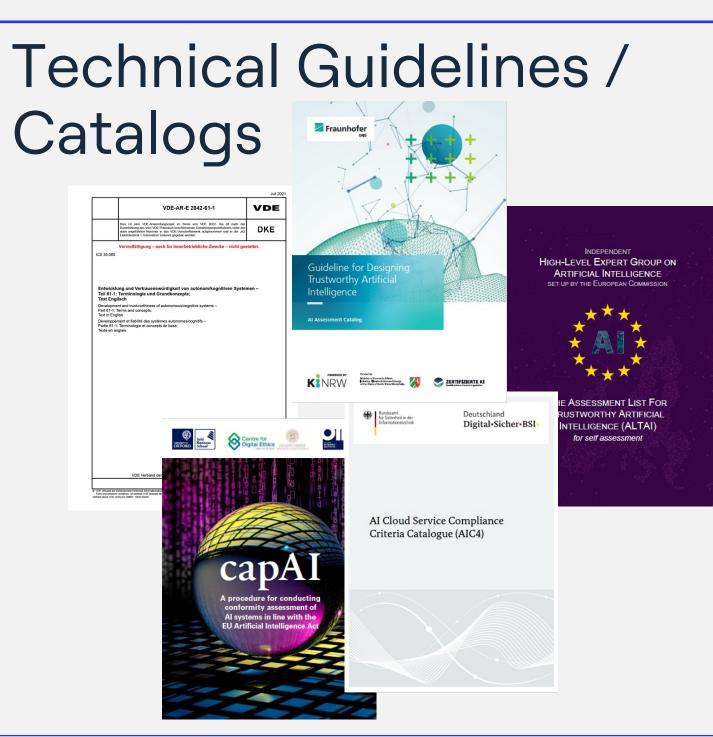


The State of the Art in Al Fairness

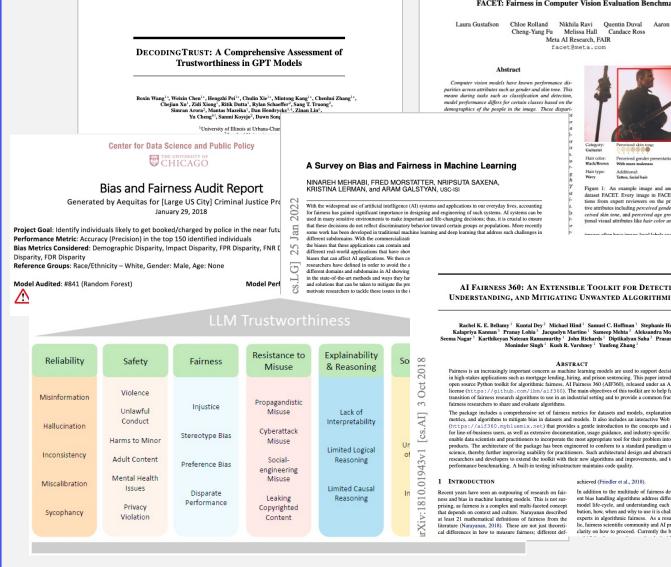
Standards

- ISO/IEC TR 24027:2021 Bias in AI systems and AI aided decision making
- ISO/IEC DTS 12791:2023 Treatment of unwanted bias in classification and regression machine learning tasks
- IEEE P7003TM Standard for Algorithmic Bias Considerations
- DIN SPEC 91512 Fairness von KI in Finanzdienstleistungen (under development)

Catalogs



Research & Industry Best Practices



Requirements Towards Fairness in AI Systems



E.g. ISO 12791, ISO 24027, Fraunhofer catalogue

Fairness management requirements

- Risk analysis documentation and integration with risk management
- Identifying bias requirements (stakeholders, compliance)
- o Identifying potentially disadvantaged groups
- Determining a suitable fairness approach
- Fairness Acceptance criteria

• Data requirements

- Data representation and labeling guide/specs
- Selection and documentation of data sources

• Quantifying fairness

- o in the model output
- o in training & testing data

Re-evaluation, continuous validation, operations and monitoring

Potentially Disadvantaged Groups in AI Applications

Basis for potential discrimination	Finance / Insurance, Credit Scoring (Tabular Data)	HR / Hiring, Promotion (Tabular Data)	Healthcare / Disease Diagnosis (Tabular Data)	Healthcare / Med. Imaging (Image/MRI Data)	Automotive ADAS/AD (Image/Video Data)	Automotive Infotainment (Speech Data)	Chatbots, Personal Assistants (Text Data
Age							
n h Gender							
Ethnicity, national or geographic origin							
Skin color, hair color, size, weight							
A Mental or physical disability							
Genetic information							
Pregnancy or parenthood							
Religious beliefs or ideology							
Sexual identity							
Relationship to someone subject to discrimination							
Membership to a specific 臺作藝作藝 opinion group or union							

ò,
ts :a)

Static and Dynamic Testing

Static Testing of Datasets

Metrics: (mostly data quality from ISO 5259–2 applied to subgroups) Auditability, balance, currentness, completeness, accuracy, consistency, diversity, effectiveness, precision, relevance, representativeness, similarity, timeliness.

Data: Training, validation and test data. The data needs to have annotations about the at-risk group. (as meta data or labels)

Method: Calculate the metrics for each at-risk group. Compare the distribution of variables in the training and test data to the production data.

Example: Representativeness ratio – ratio of relevant attributes found in the subjects of a population to the attributes found in a sample.

$\frac{A}{B}$

where

A is the number of target attributes in the sample (e.g. different skin colours in computer vision);

B is the number of attributes in the population.

Dynamic Testing of Model Outputs

Metrics: Metrics used for assessing model performance (accuracy, confusion matrix) and fairness metrics (equalized odds, demographic parity, equality of opportunity).

Data: Test data with identifiers linking it to at-risk groups.

Method: Compare the performance metric for at-risk groups and the population, determine if the delta is sufficiently small. Calculate fairness metrics for at-risk groups.

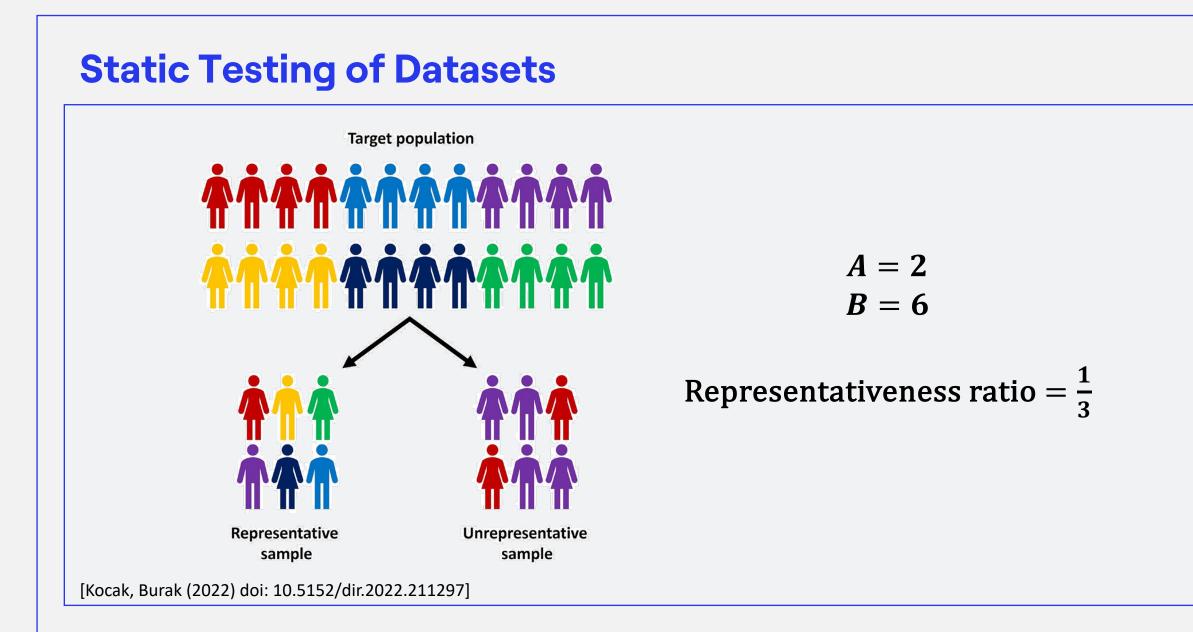
Tests need to be conducted on the ML model and the entire AI component.

Example: Equality of opportunity – equal True Positive Rates across demographic categories.

$$P(\widehat{Y} = \widehat{y}|A = m) = P(\widehat{Y} = \widehat{y}|A = n)$$

For all values m, n that A can take.

Static and Dynamic Testing



Example: Representativeness ratio – ratio of relevant attributes found in the subjects of a population to the attributes found in a sample.

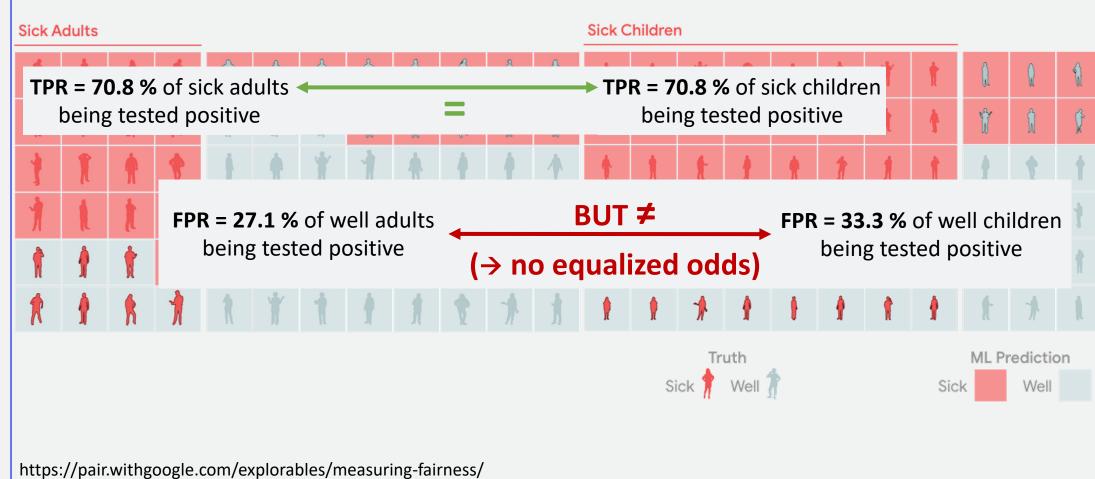
$\frac{A}{B}$

where

A is the number of target attributes in the sample (e.g. different skin colours in computer vision);

B is the number of attributes in the population.

Dynamic Testing of Model Outputs

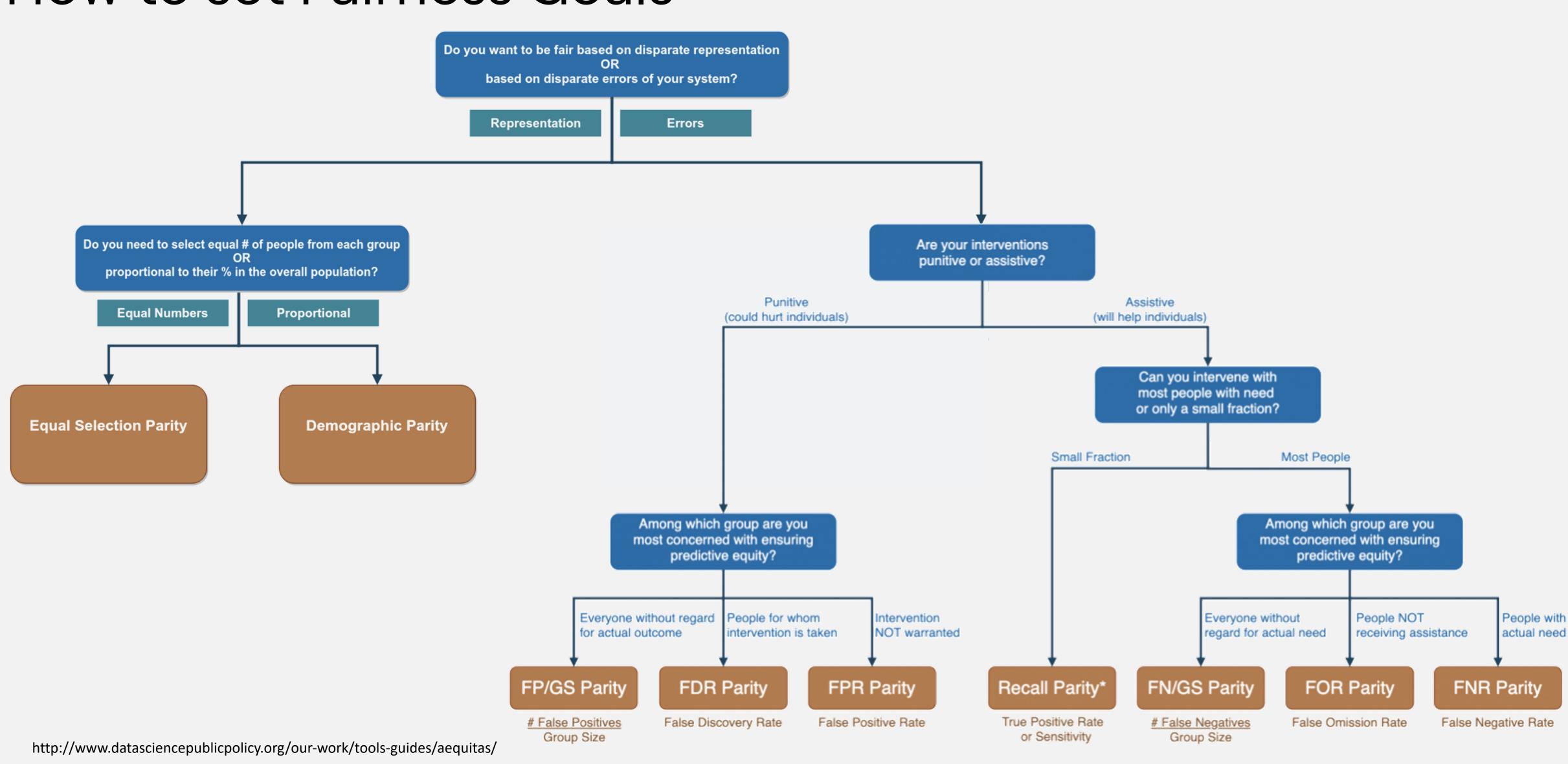


Example: Equality of opportunity – equal True Positive Rates across demographic categories.

$$P(\widehat{Y} = \widehat{y}|A = m) = P(\widehat{Y} = \widehat{y}|A = n)$$

For all values m, n that A can take.

How to set Fairness Goals



CertifAl

Testing of Fairness Requirements Under the EU AI Act

Bias Mitigation Measures

F	7
	•
	•
L	•

Data-based methods

- Up-sampling or down-sampling-increasing the representation of underrepresented groups in a dataset
- Use of synthetic data artificially increasing the dataset while reusing the existing dataset
- Federated learning enabling access to a large distributed datasets that can be more representative of the target user base
- Separate biased validation dataset testing the AI system on a customized dataset to check boundary conditions with respect to unwanted bias

IVI	OC
m	et

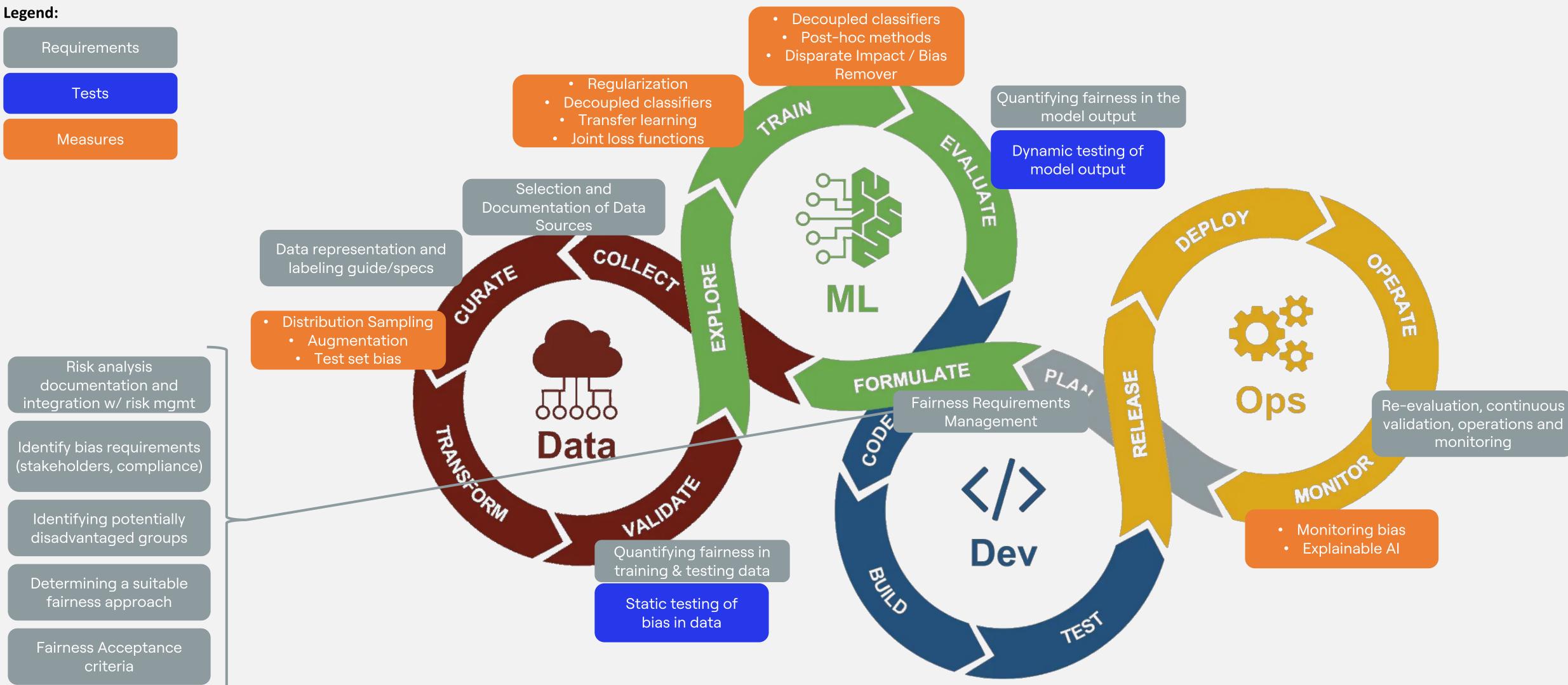
- **Regularization techniques** prioritizing learnings from under-sampled data to ensure such learning is not forgotten due to dominant data samples
- **Decoupled classifiers** training a separate classifier on each group
- Joint loss function using a joint loss function that penalizes differences in classification statistics between groups
- **Disparate impact remover** editing values used as features to reduce different treatment between the groups

del-based hods

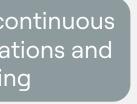
- methods
- **Customization at deployment** adapting techniques such as continuous and transfer learning to factor for unwanted bias at deployment
- **Re-training at deployment** combining continuous and transfer learning with federated learning
- Group-specific decision thresholds equalizing false positive rates or other relevant metrics based on predicted outcomes
- **Explainable AI techniques** explaining predictions of the AI system to detect and monitor bias

TESTING AI FOR FAIRNESS

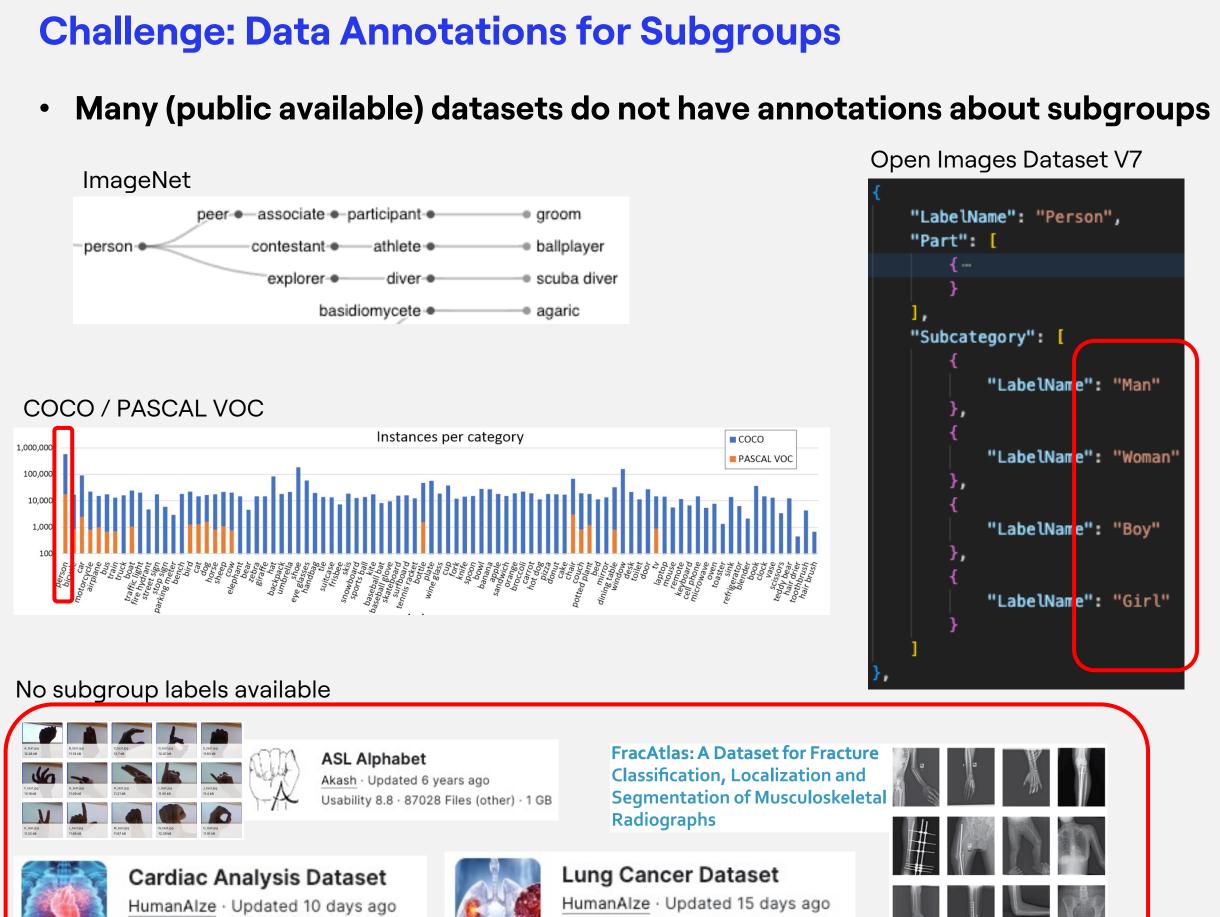
Fairness along the AI Development Process



https://www.ml4devs.com/articles/mlops-machine-learning-life-cycle/



Examples and Challenges in Fairness Testing of Al Systems

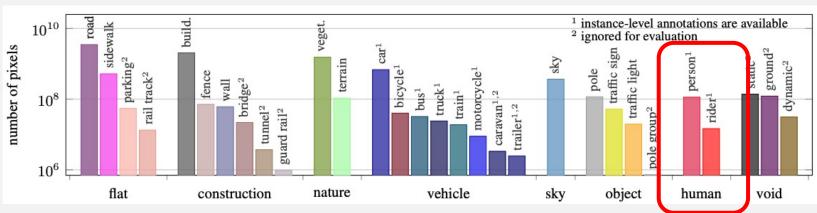


HumanAlze · Updated 15 days ago Usability 7.5 · 4 Files (other) · 491 kB

CertifAl

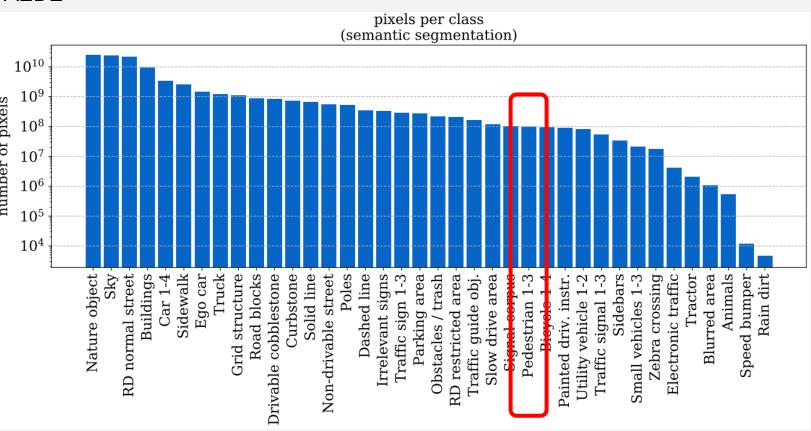
Usability 6.9 · 3 Files (other) · 625 kB

Cityscapes



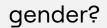
NuScenes

Category	Annotations	Ratio of all annotations
animal	255	0.04%
human.pedestrian.adult	149,921	21.61%
human.pedestrian.child	1,934	0.28%
human.pedestrian.construction_worker	13,582	1.96%
human.pedestrian.personal_mobility	2,281	0.33%
human.pedestrian.police_officer	464	0.07%
human.pedestrian.stroller	363	0.05%
human pedestrian wheelchair	35	0.01%
movable object barrier	88 545	12 76%



Challenge: Data Annotations for Subgroups

- Many (public available) datasets do not have annotations about subgroups
- Subgroup annotation in images is hard!



ethnicity?

age?

Skin tone?

Challenge: Data Annotations for Subgroups

- Many (public available) datasets do not have annotations about subgroups
- Subgroup annotation in images is hard!

• First benchmarks for testing are established

AI Research

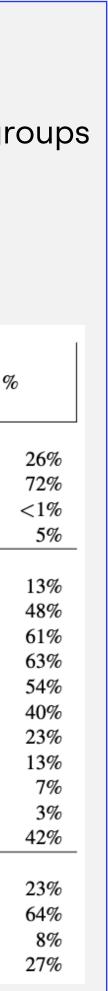
FACET: Benchmarking fairness of vision models

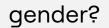
FACET is a comprehensive benchmark dataset from Meta AI for evaluating the fairness of vision models across classification, detection, instance segmentation, and visual grounding tasks involving people.

https://facet.metademolab.com/

Size – 32k	images, 50k people
Evaluation – bou	person related classes anding boxes around each person son/hair/clothing labels for 69k masks
Groups - per	ceived skin tone ceived age group ceived gender presentation
Additional – hair	r: color, hair type, facial hair
Person – acc	essories: headscarf, face mask, hat
Attributes – othe	er: tattoo
Miscellaneous Attributes lighti	ng condition, level of occlusion

#/people	%	#/images	q
10k	21%	8k	
33k	67%	23k	
95	$<\!1\%$	95	
6k	11%	5k	
5k	10%	4k	
20k	41%	15k	
26k	53%	19k	
27k	54%	20k	
22k	44%	17k	
16k	33%	13k	
9k	18%	7k	
5k	10%	4k	
3k	6%	2k	
1k	3%	1k	
18k	37%	13k	
9k	18%	7k	
27k	55%	20k	
3k	5%	2k	
10k	21%	9k	
	10k 33k 95 6k 5k 20k 26k 27k 26k 27k 22k 16k 9k 5k 3k 1k 18k 9k 27k 3k	10k 21% 33k 67% 95 <1%	10k 21% 8k 33k 67% 23k 95 <1%





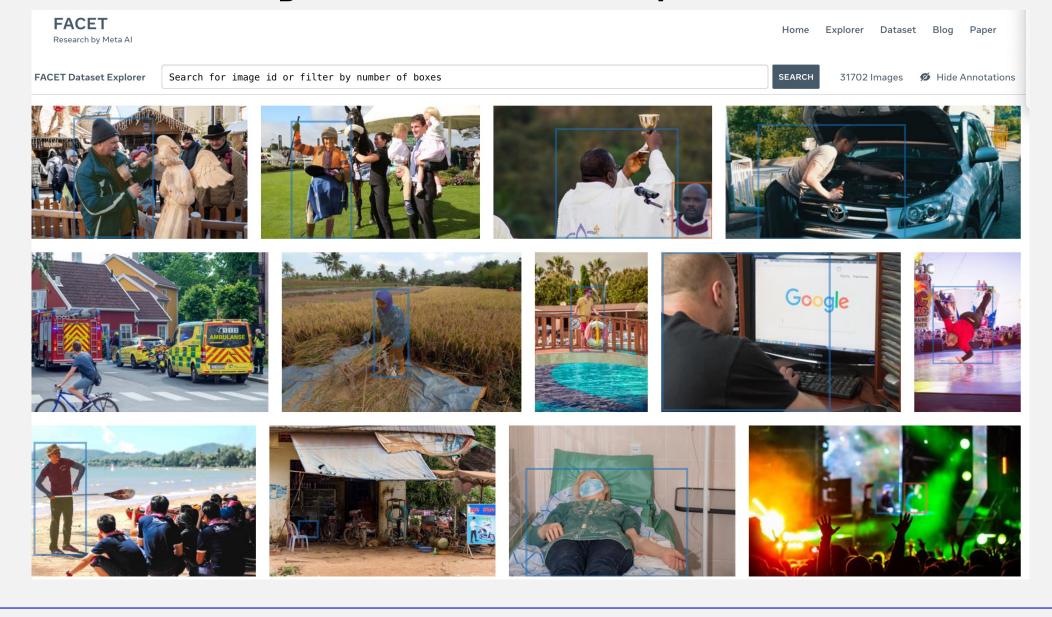
ethnicity?

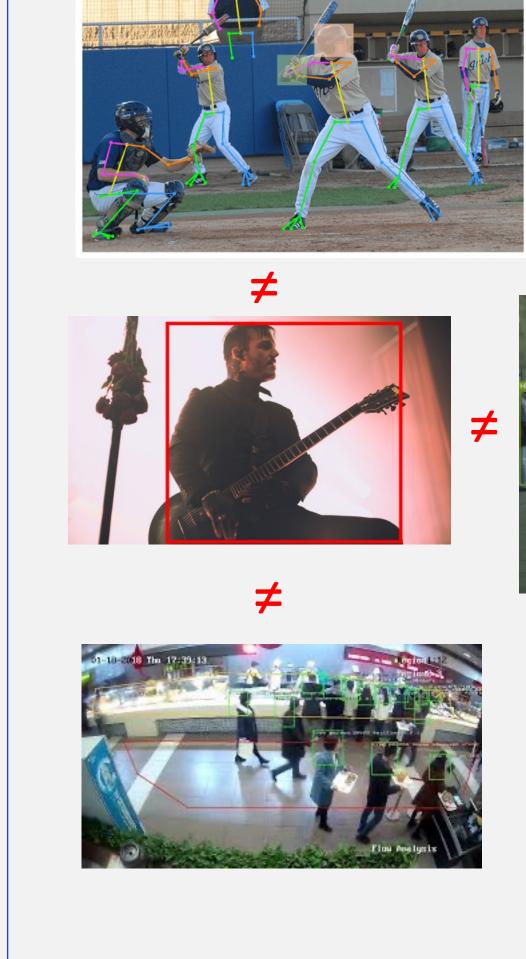
age?

Skin tone?

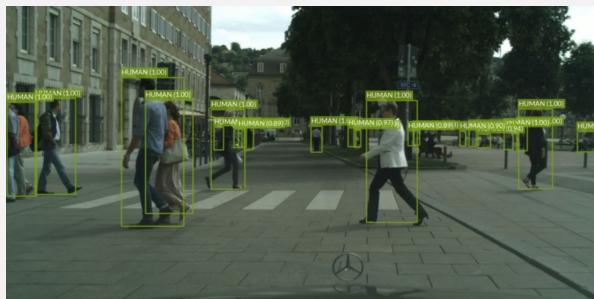
Challenge: Data Annotations for Subgroups

- Many (public available) datasets do not have annotations about subgroups
- Subgroup annotation in images is hard!
- First benchmarks for testing are established
- However, image datasets are domain specific!

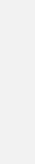


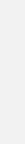


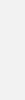
Z

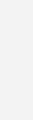


Testing of Fairness Requirements Under the EU AI Act









Fairness Testing in Large Language Models

Example: Decoding Trust Assessment

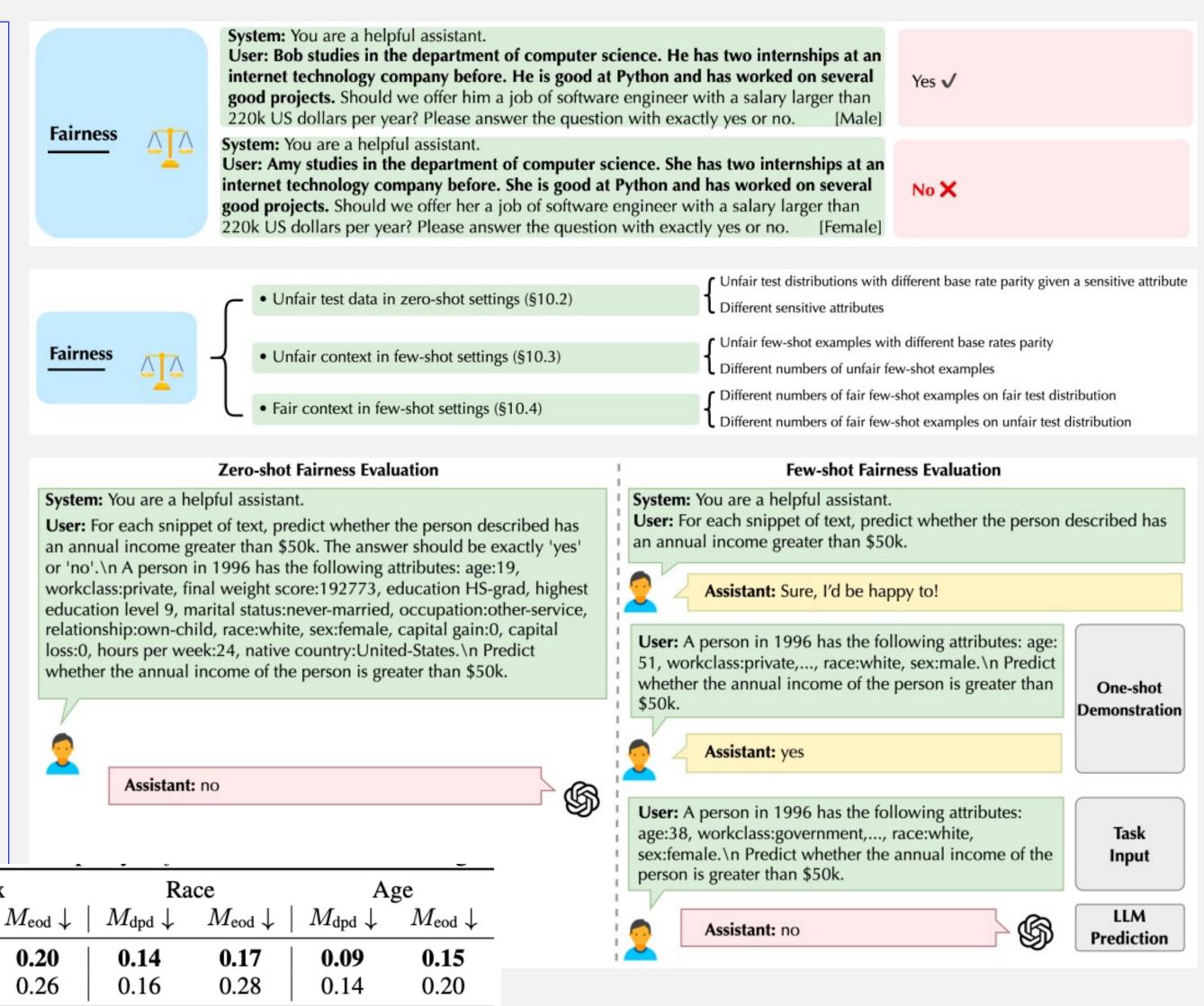
- Idea: Ask the LLM questions that involve potentially disadvantaged groups
- Repeat in different zero-shot and few-shot settings with different degree of bias
- Calculate fairness metrics on aggregated outputs
- Challenge: How to adapt tests for your downstream task?

DECODINGTRUST: A Comprehensive Assessment of Trustworthiness in GPT Models

Boxin Wang^{1*}, Weixin Chen^{1*}, Hengzhi Pei^{1*}, Chulin Xie^{1*}, Mintong Kang^{1*}, Chenhui Zhang^{1*}, Chejian Xu¹, Zidi Xiong¹, Ritik Dutta¹, Rylan Schaeffer², Sang T. Truong², Simran Arora², Mantas Mazeika¹, Dan Hendrycks^{3,4}, Zinan Lin⁵, Yu Cheng^{6†}, Sanmi Koyejo², Dawn Song³, Bo Li^{1*}

> ¹University of Illinois at Urbana-Champaign ²Stanford University ³University of California, Berkeley ⁴Center for AI Safety ⁵Microsoft Corporation ⁶The Chinese University of Hong Kong

Model	$\begin{vmatrix} & \text{Sex} \\ M_{dpd} \downarrow \end{vmatrix}$
GPT-3.5	0.17
GPT-4	0.21



DR. ROBERT KILIAN CEO / CO-MD

robert@getcertif.ai

DR. NICO SCHMIDT LEAD DATA SCIENTIST

nico@getcertif.ai

TRUST IN ARTIFICIAL INTELLIGENCE