Deep Variational Data Synthesis for Al Validation

Workshop "Visuell-explorative Bewertung neuronaler Netze"

intel.



Outline

=" Introduction

Problem, application space, What makes synthetic images ‘realistic’ ?

* Deep Variational Data Synthesis Approach

 Realistic data synthesis

= Analysis and Comparison of Synthetic & Real Data Sets
* Performance limiting factors to characterize objects

* Visual analysis

= Summary
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Application Space

= Automated Driving, Robots in industrial
environments

" |n areas that involve presence of humans
safety is paramount

= A major bottleneck in these cases is
perception

« = usually provided by Al/ML perception modules

» Operation requires validation and
verification of functionality
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Data for Al/ML

= State-of-the-art Al training by means of machine
learning (ML) requires rich annotated sensor data

« Real data requires a lot manual annotations

« Automation & rare cases: synthetic data

» Validation requires even more annotations,
specifically to be able to:

* find & explain failure of perception
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What makes synthetic images ‘realistic’ ?

= Fasy to answer: Which one is real?
* Harder: What is missing?
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Deep Variational Data Synthesis Approach

1. Parameterized Scene
Complexity, many different
objects

2. Variation of scene parameters

3. Realistic sensor simulation
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Scene generation steps

1. Ground
definition

2. Definition of
placement areas

3. Placement of
buildings

4. Random object
placement
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Parametric scene modelling

* Variation street width [3.3, 18m]

« ‘Auto-lane’ enabled, generates lanes
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Parametric scene modelling
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"density _road_persons": 0.001,
"density side persons": 0.02,
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Pedestrian Distribution Synthetic (KI-A) vs.
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* Specifically, the first project data sets had quite un-natural

spatial distribution of pedestrians (and other objects)

* Low number of different objects from one class -> low variety

and complexity

®* We build a probabilistic scene generator, leading to more

homogeneous and better approximation of natural distribution
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Sensor simulation

§ |t

bty

Parameter estimation from real images

Rendering output Output of our sensor simluation

More info, publication: K Hagn, O Grau, Improved Sensor Model for Realistic Synthetic Data Generation, Computer Science in Cars Symposium, 2021.
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https://dl.acm.org/doi/abs/10.1145/3488904.3493383
https://scholar.google.de/citations?user=yjLpRkQAAAAJ&hl=en&oi=sra
https://dl.acm.org/doi/abs/10.1145/3488904.3493383

Exam ple U rbaﬂ CI"OSS| ng Appr. 500 different assets (3D models)

Street wid. 6m — 20m, auto layout
Light variations day-night
Each frame induvial ‘scene’
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Analysis and comparison of synthetic & real data sets

Definition of Performance Limiting Factors
= Performance Limiting Factors (PLFs) are influential on the detection
performance of a DNN on a pedestrian

» These PLFs characterize an object of a dataset

* The following PLFs are considered:
« The Bounding Box Location (c_x, c_ V)
* The Bounding Box (w, y)
 Distance to the camera
* Occlusion (visible pedestrian/ whole pedestrian)
 Number of Visible Pixels

» Contrast of object to background
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Investigate Outliers in PCA

64 detected
e O
2 O b = Investigate Outliers in PCA, i.e,

pedestrian instances being
2| s outside of the major red (non-
detected) PLF area
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Investigate Outliers in PCA
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Pl

= The PLF PCA can also be used
to compare different datasets

" Here:
 Blue is our synthetic dataset
» Orange are cityscapes pedestrians

" [nteresting Instances in these
analysis are pedestrian points
of Cityscapes that do not
overlap with our synthetic
dataset

» These outliers indicate a very
high contrast

Date, Occasion
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Pl

High Contrast examples
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PLF PCA for comparison of datasets

High Contrast examples
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Pl

Use

* Here:
* Blueis our synthetic dataset

« Orange are cityscapes pedestrians

* The outliers indicate high contrast, low

occlusion and high visible pixels count

INTEL LABS SSA/ESL | THE FUTURE BEGINS HERE

pca-two

PCA for comparison of datasets

8

Intel Confidential

22



PLF PCA for comparison of datasets

High contrast, low occlusion, high number of visible pixels
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Pl

PCA for comparison of datasets

High contrast, low occlusion, high number of visible pixels
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Summary

» Automated data generation pipeline produces unbiases
distributions and steerable scene complexity

* produce synthetic data to ‘match’ real data on
* Scene complexity
 Spatial distribution
» Sensor characteristics -> Deep Variational Data Synthesis

* The PCA of PLFs allows for a visual inspection of differences in
datasets and comparisons of synthetic & real data sets
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