Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Key Challenges

  • Knowledge Graph Construction and Maintenance: Creating and updating high-quality knowledge graphs for specific domains can be challenging and resource-intensive.
  • Scalability and Efficiency: Retrieving information from large and complex knowledge graphs while maintaining acceptable response times remains challenging.
  • Evaluation Standardization: The lack of widely accepted benchmarks and evaluation metrics hinders progress and comparability across Graph RAG approaches. The quality of KG is crucial.
  • Human Element, we need knowledge engineers and domain specialists. 

References

  • [1] Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, Siliang Tang: Graph Retrieval-Augmented Generation: A Survey. CoRR abs/2408.08921 (2024)
  • [2] Diego Collarana, Moritz Busch, Christoph Lange: Knowledge Graph Treatments for Hallucinating Large Language Models. ERCIM News 2024(136) (2024)
  • [3] Junde Wu, Jiayuan Zhu, Yunli Qi: Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation. CoRR abs/2408.04187 (2024)
  • [4] Sen, Priyanka, Sandeep Mavadia, and Amir Saffari. Knowledge graph-augmented language models for complex question answering. Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations - NLRSE (2023)
  • [5] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, Xindong Wu: Unifying Large Language Models and Knowledge Graphs: A Roadmap. IEEE Trans. Knowl. Data Eng. 36 (7) (2024)
  • [6] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, Jonathan Larson: From Local to Global: A Graph RAG Approach to Query-Focused Summarization. CoRR abs/2404.16130 (2024)
  • [7] Bhaskarjit Sarmah, Benika Hall, Rohan Rao, Sunil Patel, Stefano Pasquali, Dhagash Mehta: HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction. CoRR abs/2408.04948 (2024)
  • [8] Jens Lehmann, Dhananjay Bhandiwad, Preetam Gattogi, Sahar Vahdati: Beyond Boundaries: A Human-like Approach for Question Answering over Structured and Unstructured Information Sources. Trans. Assoc. Comput. Linguistics (2024)
  • [9] Juan Sequeda, Dean Allemang, Bryon Jacob: A Benchmark to Understand the Role of Knowledge Graphs on Large Language Model's Accuracy for Question Answering on Enterprise SQL Databases. GRADES/NDA (2024)

...